Minimum cost input/output design for large-scale linear structural systems
نویسندگان
چکیده
In this paper, we provide optimal solutions to two different (but related) input/output design problems involving large-scale linear dynamical systems, where the cost associated to each directly actuated/measured state variable can take different values, but is independent of the labeled input/output variable. Under these conditions, we first aim to determine and characterize the input/output placement that incurs in the minimum cost while ensuring that the resulting placement achieves structural controllability/observability. Further, we address a constrained variant of the above problem, in which we seek to determine the minimum cost placement configuration, among all possible input/output placement configurations that ensures structural controllability/observability, with the lowest number of directly actuated/measured state variables. We show that both problems can be solved efficiently, i.e., using algorithms with polynomial time complexity in the number of the state variables. Finally, we illustrate the obtained results with an example.
منابع مشابه
Potentials of Evolving Linear Models in Tracking Control Design for Nonlinear Variable Structure Systems
Evolving models have found applications in many real world systems. In this paper, potentials of the Evolving Linear Models (ELMs) in tracking control design for nonlinear variable structure systems are introduced. At first, an ELM is introduced as a dynamic single input, single output (SISO) linear model whose parameters as well as dynamic orders of input and output signals can change through ...
متن کاملCOMPUTATIONALLY EFFICIENT OPTIMUM DESIGN OF LARGE SCALE STEEL FRAMES
Computational cost of metaheuristic based optimum design algorithms grows excessively with structure size. This results in computational inefficiency of modern metaheuristic algorithms in tackling optimum design problems of large scale structural systems. This paper attempts to provide a computationally efficient optimization tool for optimum design of large scale steel frame structures to AISC...
متن کاملAN EFFICIENT METHOD FOR OPTIMUM PERFORMANCE-BASED SEISMIC DESIGN OF FUSED BUILDING STRUCTURES
A dual structural fused system consists of replaceable ductile elements (fuses) that sustain major seismic damage and leave the primary structure (PS) virtually undamaged. The seismic performance of a fused structural system is determined by the combined behavior of the individual PS and fuse components. In order to design a feasible and economic structural fuse concept, we need a procedure to ...
متن کاملOptimal Control of Nonlinear Multivariable Systems
This paper concerns a study on the optimal control for nonlinear systems. An appropriate alternative in order to alleviate the nonlinearity of a system is the exact linearization approach. In this fashion, the nonlinear system has been linearized using input-output feedback linearization (IOFL). Then, by utilizing the well developed optimal control theory of linear systems, the compensated ...
متن کاملDesign On-Line Tunable Gain Artificial Nonlinear Controller
One of the most important challenges in nonlinear, multi-input multi-output (MIMO) and time variant systems (e.g., robot manipulator) is designing a controller with acceptable performance. This paper focused on design a new artificial non linear controller with on line tunable gain applied in the robot manipulator. The sliding mode fuzzy controller (SMFC) was designed as 7 rules Mamdani’s infer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Automatica
دوره 68 شماره
صفحات -
تاریخ انتشار 2016